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A Multifilament Method-of-Moments Solution
for the Input Impedance of a Probe-Excited

Semi-Infinite Waveguide

JOHN M. JAREM, MEMBER, IEEE

Abstract —The input impedance and surface currents of a probe-excited,

short-circuited semi-infinite wavegnide are determined by the method of

moments. Expressions are given for the impressed electric field used to

excite the probe from the coaxial source input using a semi-infinite-wave-

guide Green’s function, and expressions are given for a free-space ap-

proximate impressed electric field which arises from the coaxiaf source

inpnt. The method-of-moments formulation used is based on a multifila-

ment current approximation and solves for the surface currents of the

probe as a function of probe angle around the probe. Comparison of theory

and experiment is made.

L INTRODUCTION

A N IMPORTANT PROBLEM in microwave theory is

the problem of determining the input impedance of a

coaxial probe when it is inserted into a waveguide which is

short circuited on one side and extends to infinity on the

other. This problem of determining the input impedance

has been studied by Collin [1], and the closely related

problem of determining the input impedance of a coaxial

feed into a rectangular waveguide which is infinite on both

sides has been studied by A1-Hakkak [2], Williamson

[3]-[8], and others.

In the studies of Collin [1] and A1-Hakkak [2], the

impedance analysis consists of determining a Green’s func-

tion for the EM fields and currents in a semi-infinite

rectangular waveguide and then extremalizing a variational

impedance expression which is based on the above Green’s

function to determine the input impedance of the probe in

the waveguide system. In the analysis of [1], [2], a single

modal current was used as a trial function. In the studies

of Williamson [3]–[8], the problem of determining the

input impedance of a probe in an infinite rectangular

waveguide was analyzed by using a method-of-moments

technique [3], [4] and was analyzed by deriving a closed-

form impedance expression [5]–[8]. The above techniques

of Williamson [3]–[8] were based on defining and using an

appropriate set of Green’s functions to describe the fields

and currents in the waveguide.

An important assumption that was made in both the
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studies of [1], [2] and [3]–[8] was that the electric current

which flowed on the probe surface was uniform in distri-

bution around the probe. Two important further assump-

tions that were made by [1], [2] were that this current could

be effectively represented by a filamentary current located

at the center of the probe and that the impressed electric

field which radiates from the coaxial base was extremely

localized at the base of the probe and could be treated as

such.

At this point, it is useful to discuss these assumptions in

relation to the exact probe waveguide problem which

actually occurs and in relation to a multifilament method-

of-moments analysis made by Leviatan et al. [9], [10].
Concerning the first two assumptions, a recent analysis by

Leviatan et al. [9], [10], which concerned the scattering of a

TEIO mode from a top-to-bottom cylindrical post in a

rectangular waveguide, showed that even for posts with

relatively thin radii the probe’s surf ace current was non-

uniform in angle around the probe. This analysis also

showed that the nonuniform currents of larger posts had

more effect on the scattering parameters of the post sys-

tems than did smaller ones. Based on the above investiga-

tions [9], [10], a natural question that arises is whether the

probe current in the present problem is significantly non-

uniform. Concerning the assumption about the impressed

source electric field, to the author’s knowledge no analysis

has studied how the impressed electric field, given by an

exact semi-infinite-waveguide Green’s function, that oc-

curs at the base of a coaxial probe affects the input
impedance of the overall system.

In the light of the above discussion, the purpose of this

paper will be to solve for the input impedance of a coaxial

probe in a semi-infinite waveguide using a method-of-

moments formulation based on a nonuniform surface cur-

rent approximation and on the use of an impressed electric

field arising from a semi-in finite-waveguide Green’s func-

tion.

11. METHOD-OF-MOMENTS EQUATIONS

This section will be concerned with presenting the elec-

tric-field integral equations, Green’s functions, and matrix

equations which can be used to solve for the input imped-

ance of a coaxial probe in a semi-infinite waveguide for the

geometry shown in Fig. 1.

In this analysis, it will be assumed that the probe is
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Fig. 1. The geometry of the semi-infinite rectangular waveguide under

consideration is shown. The x‘s and dots shown in the lower figure (top
view) represent the location of the filamentary current source points (x)
and electric-field testing points (dots).

centered in the waveguide and that a set of eight filamen-

tary currents, shown in Fig. 1, represent the surface cur-

rent on the probe surface. Symmetry of the probe position

shows that only four of the eight filamentary currents need

to be solved for. It will also be assumed that each filamen-

tary current, which represents a 450 slice of the probe

surface current, can be represented as an expansion of

modal functions which vary with vertical position on the

probe (the y coordinate of Fig. 1).

The basic electromagnetic boundary condition in this

problem is the boundary condition that the total EYT

electric field at the probe surface equals zero. The total

electric field at a point on the probe surface is composed

of terms which are due to radiation from each 450 fila-

mentary current ‘making up the probe current and to

radiation from the coaxial frill source at the base of the

probe. In this analysis, the electric-field boundary condi- -

tion will be imposed by setting the electric field to zero at

the dot points shown in Fig. 1. These points have been

chosen because they provide a maximum separation be-

tween the testing points on the probe and the source points

on the probe and, as later calculations will show, thereby

provide spacing which will allow the most rapid con-

vergence possible of the Green’s functions of the system.

Mathematically, the probe electric-field equation is given

by

8

x E~,i+E~,=O, i=l,...,4 (1)
ir=~

where E~i, i, represents the radiation from the i‘ filamen-

tary source to electric-field ~oint i. and E.?. rer)resents the

electric field which radiates from the frill source at the

probe base to the point where the electric field is being

evaluated. The coordinates of the i‘ and i points in Fig. 1

are given by

X;t = rIsin#,, z:, = rl cos & (2)

xi = rIsin @z, Zi = rlcos +, (3)

t#$=(i’-~)A@ i~=l,. ..,8

@,=(i–l)A@ ,...,4i=l

A@= v/4.

The E;, i, electric field is given by

/
Ej,i, = rlA@ ‘b’2+hGYY(x,, y, z, Ix:,, y’, z(,)

– b/2

..ly(y’, r#l;/) dy’ (4)

where
2

Jy(y’, (f)= ~ j.,,,t,,( y’)pi,(iy) (5)
~~=1

I‘ink(h++o s~=l

t#(y) =

‘I(y)+ a[’-cosk(h-(y+:))l “=2

(6)

IO elsewhere

where

/

–b/2+h z
~=—

tl(y)dy
– b/2

/! –b/2+h

[ ( ++oldyotl(y) l–cosk h
- b/2

In (4) and (5), j,,i, (A/cm) represents a set of multifila-

ment coefficients which are used to expand the unknown

surface current JY; GYY represents the yy component of a

semi-infinite rectangular waveguide dyadic Green’s func-

tion. The coefficients j,,,, have been called multifilament

expansion coefficients because of the way GYY and JY in

(4) were point sampled in # and thus behaved as if they

were multifilament sources.

The constant a in (6) has been chosen so that tland t2

are orthogonal with weight 1 to one another in the interval

O < y + b/2< h. This ensures that tl and t2 form a lin-

early independent set and thus are suitable as expansion

functions.

The Green’s function in (4) is given by

2j71 m (–kj+k2) b
GYY=– — ~

kab ~=o ~. ()
coskY y+~

. . Y, .
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where
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?l=(p/6)1’2

$(x,x’, w) =F:(x, x’, w)

(8)

1-{}
l–T+

~Reln —
l–T_ ‘

~=()

F;(x, x’, w) = ~ (9)

~ ~KO{kv[w2+m ?]1/2)-K O(kY[w2+m~]1/2}1, n>l?—

m_=2am +x_

m+=2am+xh
~_=x.-xl

x+=x+ x’+a

kY=~, kX=E
a

K.= modified Bessel function of the 2nd kind

{
2 n=O

‘n= 1 n+O
(lo)

and the other terms have been defined previously. As can

be seen in (7), maximum convergence of the first S; term

of the Green’s function GYY occurs for maximum sep-

aration of the source and observation points. In (7), the

second S: term represents the interaction of the probe

with its short-circuit image. In (9), the upper portion of the

Fns term has been obtained from [9] and the lower portion

from [1].

The impressed electric field E~,, which is used in (l), has

in this paper been derived by using two different methods.

In the first method, the impressed electric field has been

derived by using a Green’s function that ignores the wave-

guide environment and describes only the coaxial aper-

ture–probe surface radiation interaction. This is the

Green’s function which would be used to describe how a
coaxial aperture radiates onto a probe in a free-space

infinite ground plane system. In the second method, the

impressed electric field has been obtained first by deriving

the Green’s function which represents how a magnetic

current radiates in a semi-infinite waveguide and then by

using this Green’s function to find how the coaxial mag-

netic surface currents radiate onto the probe. The second

method for determining impressed electric field requires

more computational time than the first but produces more

accurate results. Both methods give nearly the same im-

pressed electric field when the probe radius is small but

show simificant differences as the size of the txobe radius

, ,J

increases. The electric field E; which results from the first

method is given by [11]

.[(z-z’)Mx-(x-x’) Mz]r’dr’d@’ (11)

where

Mx=–:cos#

A4z = $ sin #

V.
EO=—

()
in 5

rl

b
V.= coaxial input voltage at y = – ~

r,= [(x –x’)2+(y – y’)2+(z – Z’)2]1’2.

The impressed electric field of the second, more exact

method is given by

where

and where A4X and Mz are given above in (11). In (12), gX~

and gz~ are the n coefficients of the Green’s functions

which are associated with the delta magnetic surface cur-

rents W = MO 8(7– F’)dX and fi = MO 8(7– F’)dz.

Mathematically, gX. and g=. have been derived by the

same method as was used by Collin for GYY but for

magnetic-type sources MX and M=. The gX~ and gz~ are

given by

“q%.=,ZZIEJAZ(X>Zlx’, z’) = --&

8s:
+ 8W 1(14)

w=z+z ’+’d,
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and may be

2

[

AS;
gzn(x, zlx’, z’) =— —

abin Jx ~=,z-z~,

as;— 1 (15)
‘x iw=z+.’+2dj

.,

where S; has been defined previously and

()S;(X, X’, w) = ~;(X, X’, W)+ ~ coskX X + :

. COS kX

where

F;(x, x’, W)=

a

)[

~–7w ~– (k;+ k;)’/2w

c’+— —–

2y
( )

k:+ k: 112
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determined approximately from

‘m=J2+’’+’@=
V.

I“
(20)

IN

A more accurate expression for input impedance can be

obtained from the expressions in [7] and [12], which in-

volve integrals over the coaxial aperture. These expressions

were not derived since fairly good agreement with experi-

ment was obtained by the use of (20). The solution of the

matrix equation also provides the surface currents, scatter-

ing parameters, and power which has been radiated by the

probe.

In concluding this section, we note that the formulation

which has been presented can be easily modified to de-

termine solutions for the probe current and the input

— &,Reln [(l- T+)(l -T_)], ~=()

1
.—

2kYe
“Y’”+ ; : [KO(kY(w2+ m:) ’~}+ KO{kY(w2+ nz:)’’2)], n>l ’17)

~-—~

and the other terms have been derived previously. The

upper portion of the F.c term has been derived by using a

small modification of the analysis of [9] and the lower

portion by making a small modification of Collin’s analy-

sis [1].

Once the electric field due to radiation from the probe

back onto itself has been defined and the impressed elec-

tric field due to the coaxial aperture has been defined, the

next step in the analysis is to convert (1) into a matrix

equation which can thus be solved to find the surface

currents j,,. This is accomplished by multiplying (1) by

suitable testing functions and integrating from – b/2 to

– b/2+ h. The resulting equation after integration is the

matrix equation

~ ~ ‘~,,~,,j~,,,= - ~~~+ht~(~)E~(~) d~ ‘~,
~~=1~~=1

(18)

or

Zj=~ (19)=-

where ~ is determined after substitution of (4) in (1) and

the integrations of the appropriate integrals have been

carried out. In (18), the t,(y) of (6) was used as a testing

function. Although many testing functions are possible,

this one was chosen because 1) it becomes small near the

probe end, as does the impressed electric field, 2) it pro-

duces a symmetric matrix equation that can be more

numerically stable to invert than a nonsymmetric matrix

equation which would result from other testing functions,

and 3) it reduces computer time since the same function is

used as an expansion function and a testing function.

Once the matrix equation is solved, the input impedance

impedance of the antenna system under the assumption

that the probe current radiates from inside the probe

surface and also under the assumption that the probe

surface current is uniform. The solution which assumes

that the probe surface current radiates from within the

probe surface is obtained from the above formulation by

replacing rl in (2) with rj, where O < r;< rl. This method

has proved useful, as shown in [10], of producing more

physical probe current solutions than when the probe

current is taken to radiate from the probe surface. In the

limiting case of r;= O, the solution reduces to the center-

located single-filament approximation used by Collin [1].

The uniform surface current solution, which applies when

the surface current is on the probe surface rr, = rl or

assumed to be inside the probe surface (O < r; < rl), is

determined directly from the probe matrix equation by

setting all of the surface current expansion coefficients j~,i,

equal to one another for a given s‘ (s’= 1, 2), averaging the

resulting set of equations over i for a given s (s =1, 2), and

then solving the reduced matrix equation (2x 2) to de-

termine the uniform surface current expansion coefficients.

The present author recommends that, in the case when the

probe radius becomes relatively large, both the above

solutions be obtained in order to cross-check the solution

given by (19).

III. NUMERICAL RESULTS

In this paper, the matrix equation, (19), was inverted for

a fairly large number of different cases corresponding to

different probe heights, short-circuit distances, and fre-

quencies. In calculating these inverses, it was found that

the matrix condition number ranged from relatively low
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Fig. 2. The normalized input impedance as determined by Collin [1]

(square), moment method with r;= rf (dot), uniform current approxi-

mation with rj = rr (solid triangle), uniform filamentary current ap-

proximation with r;= 0.01 r] (hollow square) and experiment (plus) are

shown for two different frequencies and four different probe heights
(see text) at a radius of r,= 0.1778 cm. Zc = 50 Q and z IN= zIN/zc.

Fig. 3. The normalized input impedance as determined by moment

method with r; = rl (dot), uniform current approximation r; = rl (solid

triangle), and uniform filamentary current approximation rj = 0.01 rr
(hollow square) is shown for two different frequencies and foor differ-

ent probe heights (see text) at a radius of rr = 0.5334 cm. z== 50 Q and
ZIN = z~N/zc

values of 15 to high values of 500. Because of this, the

matrix inversion was calculated by using the pseudoinverse

method described in[13]. This method proved to be useful

for the present problem because it provided the exact

matrix equation solution in the cases where the condition

number was low and provided low-norm, least-square er-

ror, approximate matrix solutions when the condition

number was high.

A comparison of the input impedance obtained by the

solution of (19) with experiment is shown in Fig. 2 for the

frequencies of 2.0 GHz and 2.5 GHz and is shown when

e~ = 3.75, a = 5.715 cm, b = 2.223 cm, d =1.524 cm, rl =

0.1778 cm, Al= 1.270 cm, & =1.524 cm, h~ =1.778 cm,

and h ~ = 2.032 cm. Experimentally, the semi-infinite na-

ture of the waveguide was implemented by 1) placing two

probes in a variable length cavity, 2) measuring the two-

port parameters of these probes at different cavity lengths,

and 3) analyzing this two-port data to determine the

equivalent two-port parameters of a probe which is located

in a semi-infinite waveguide. Theoretically, the impedance

solution shown in Fig. 2 was obtained by solving (19)

using the impressed electric field given in (11) and using

the pseudoinverse method. As can be seen, fairly close

agreement exists between theory and experiment.

Also shown in Fig. 2 is the input impedance determined

by the uniform current approximation when the

probe current was assumed to be on the probe surface

(r/ = rl) and when the probe was nearly center located

(r; = 0.01 rl). As can be seen, virtually no difference in the

impedance answers occurred for this radius size of rl =

0.1778 cm. In contrast Collin’s solution, which is based on

keeping only the tl( y) term of (6), shows a very significant

difference when theory and experiment are compared. The

tz( y) term, when included in the analysis, greatly improves

the accuracy of the analysis when compared with experi-

ment.

Fig. 3 shows a comparison of the matrix solution (19)

when r;= rl, the uniform current approximation when

r; = rl, and the uniform current approximation when r; =

0.01 rl in the case when rl = 0.5334 cm and all other

parameters are the same as in Fig. 2. Equation (11) was

used to describe the impressed electric field. The radius

value is three times that which was used in Fig. 2; thus,

this case may be classified as a wide-radius case. In con-

trast to the impedance data of Fig. 2 (rI = 0.1778 cm), the

impedance data of Fig. 3 show a significant variation in

impedance results when using the matrix solution, uniform

current approximation (r{ = rl), and center-located fila-

ment approximation (r; = 0.01 rI). It is also interesting

that the matrix solution shown in Fig. 3 tended to be

bounded on either side by the probe surface uniform

current approximation (r; = rI ) and the filamentary uni-

form current approximation (r; = 0.01 rl). Impedance

calculations were made for the rl = 0.3556-cm case, and

similar results to Fig. 3, but with less separation, were

observed.

In Fig. 4, the magnitude of the surface current is shown

as a function of @ and of the normalized probe height

coordinate y. = (y + b/2)/h for the case of ~ = 2.5 GHz,

rl = 0.1778 cm, h = 1.778 cm, and all of the other parame-
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Fig. 4. The magnitude of the probe surface current (verticaf axis) is
shown as a function of the normalized probe height y. (horizontal axis)
and the probe angle + (the third remaining axis). The + indexed lines
running left to right show the surface current as a function of height for
a given ~, and the yn indexed lines show the surface current as it varies
with O for a given y.

ters the same as in Fig. 2. As can be seen, a large variation

in the surface current occurs around the probe.

In concluding this section, the author would like to

present some general information which has been obtained

by solving different cases but which has not been pre-

sented graphically. The first pieces of general information

are that 1) the probe surface current determined by (19)

vanes greatly with angle aroun,d the probe and 2) this

angular variation of the probe surface current made little

difference in the input impedance except as the probe

radius became large. The fact that the probe current solu-

tion varies with angle around the probe is not surprising

considering the nonsymmetric waveguide environment

which surrounds the probe. A second piece of information

that was obtained from solving different cases was the fact

that the impressed electric fields given by (11) and (13)

were nearly identical when the probe radius was thin but

became significantly different as the probe radius became

increasingly larger. The two impressed electric-field ap-

proximations gave nearly the same impedance results for

Fig. 2 but significantly different results for Fig. 3. A third

result that was obtained from studying many different

cases over a wide frequency range was the fact that the

power delivered at the coaxial aperture equaled the power

transmitted down the waveguide to within a few percent.

This power conservation was observed when only a TEIO

mode propagated and was also observed when the

frequency was large enough for multimode to propagate.

Power conservation was observed to hold less well, how-

ever, as the frequency beeame larger or the probe radius

became larger.

IV. CONCLUSIONS

A method-of-moments solution for the input impedance

and probe surface currents of a probe feeding into a

semi-infinite rectangular waveguide has been presented.

Accurate and approximate formulas for the impressed

coaxial electric field were derived. The matrix solution for

the input impedance was shown to give better results for

the input impedance than Collin’s formulas [1]. The probe

surface current was shown to vary significantly with probe

angle. Overall, fairly good agreement between theory and

experiment was found for the experimental cases which

were tried.
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