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A Multifilament Method-of-Moments Solution
for the Input Impedance of a Probe-Excited
Semi-Infinite Waveguide

JOHN M. JAREM, MEMRBER, IEEE

Abstract — The input impedance and surface currents of a probe-excited,
short-circuited semi-infinite waveguide are determined by the method of
moments. Expressions are given for the impressed electric field used to
excite the probe from the coaxial source input using a semi-infinite-wave-
guide Green’s function, and expressions are given for a free-space ap-
proximate impressed electric field which arises from the coaxial source
input. The method-of-moments formulation used is based on a multifila-
ment current approximation and solves for the surface currents of the
probe as a function of probe angle around the probe. Comparison of theory
and experiment is made.

I. INTRODUCTION

N IMPORTANT PROBLEM in microwave theory is

the problem of determining the input impedance of a
coaxial probe when it is inserted into a waveguide which is
short circuited on one side and extends to infinity on the
other. This problem of determining the input impedance
has been studied by Collin [1], and the closely related
problem of determining the input impedance of a coaxial
feed into a rectangular waveguide which is infinite on both
sides has been studied by Al-Hakkak [2], Williamson
[3]1-[8], and others.

In the studies of Collin [1] and Al-Hakkak [2], the
impedance analysis consists of determining a Green’s func-
tion for the EM fields and currents in a semi-infinite
rectangular waveguide and then extremalizing a variational
impedance expression which is based on the above Green’s
function to determine the input impedance of the probe in
the waveguide system. In the analysis of [1], [2], a single
modal current was used as a trial function. In the studies
of Williamson [3]-[8], the problem of determining the
input impedance of a probe in an infinite rectangular
waveguide was analyzed by using a method-of-moments
technique [3], [4] and was analyzed by deriving a closed-
form impedance expression [5]-[8]. The above techniques
of Williamson [3]-[8] were based on defining and using an
appropriate set of Green’s functions to describe the fields
and currents in the waveguide.

An important assumption that was made in both the
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studies of [1], [2] and [3]-[8] was that the electric current
which flowed on the probe surface was uniform in distri-
bution around the probe. Two important further assump-
tions that were made by [1], [2] were that this current could
be effectively represented by a filamentary current located
at the center of the probe and that the impressed electric
field which radiates from the coaxial base was extremely
localized at the base of the probe and could be treated as
such.

At this point, it is useful to discuss these assumptions in
relation to the exact probe waveguide problem which
actually occurs and in relation to a multifilament method-
of-moments analysis made by Leviatan er al. [9], [10].
Concerning the first two assumptions, a recent analysis by
Leviatan et al. [9], [10], which concerned the scattering of a
TE,, mode from a top-to-bottom cyclindrical post in a
rectangular waveguide, showed that even for posts with
relatively thin radii the probe’s surface current was non-
uniform in angle around the probe. This analysis also
showed that the nonuniform currents of larger posts had
more effect on the scattering parameters of the post sys-
tems than did smaller ones. Based on the above investiga-
tions [9], [10], a natural question that arises is whether the
probe current in the present problem is significantly non-
uniform. Concerning the assumption about the impressed
source electric field, to the author’s knowledge no analysis
has studied how the impressed electric field, given by an
exact semi-infinite-waveguide Green’s function, that oc-
curs at the base of a coaxial probe affects the input
impedance of the overall system.

In the light of the above discussion, the purpose of this
paper will be to solve for the input impedance of a coaxial
probe in a semi-infinite waveguide using a method-of-
moments formulation based on a nonuniform surface cur-
rent approximation and on the use of an impressed electric
field arising from a semi-infinite-waveguide Green’s func-
tion.

II. METHOD-OF-MOMENTS EQUATIONS

This section will be concerned with presenting the elec-
tric-field integral equations, Green’s functions, and matrix
equations which can be used to solve for the input imped-
ance of a coaxial probe in a semi-infinite waveguide for the
geometry shown in Fig. 1.

In this analysis, it will be assumed that the probe is
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Fig. 1. The geometry of the semi-infinite rectangular wavegnide under
consideration is shown. The x’s and dots shown in the lower figure (top
view) represent the location of the filamentary current source points (x)
and electric-field testing points (dots).

centered in the waveguide and that a set of eight filamen-
tary currents, shown in Fig. 1, represent the surface cur-
rent on the probe surface. Symmetry of the probe position
shows that only four of the eight filamentary currents need
to be solved for. It will also be assumed that each filamen-
tary current, which represents a 45° slice of the probe
surface current, can be represented as an expansion of
modal functions which vary with vertical position on the
probe (the y coordinate of Fig. 1).

The basic electromagnetic boundary condition in this
problem is the boundary condition that the total E ;-
electric field at the probe surface equals zero. The total
electric field at a point on the probe surface is composed
of terms which are due to radiation from each 45° fila-
mentary current making up the probe current and to
radiation from the coaxial frill source at the base of the

probe. In this analysis, the electric-field boundary condi-

tion will be imposed by setting the electric field to zero at
the dot points shown in Fig. 1. These points have been
chosen because they provide a maximum separation be-
tween the testing points on the probe and the source points
on the probe and, as later calculations will show, thereby
provide spacing which will allow the most rapid con-
vergence possible of the Green’s functions of the system.

Mathematically, the probe electric-field equation is given
by

8
Y Ej, .+E}]=0,

=1

i=1,--,4 (1)

where EJ, ,, represents the radiation from the i’ filamen-

tary source to electric-field point i, and E;, represents the

electric field which radiates from the frill source at the
probe base to the point where the electric field is being
evaluated. The coordinates of the i and i points in Fig. 1
are given by
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In (4) and (5), j,.» (A/cm) represents a set of multifila-
ment coefficients which are used to expand the unknown
surface current J,; G,, represents the yy component of a
semi-infinite rectangular waveguide dyadic Green’s func-
tion. The coefficients j,,,. have been called multifilament
expansion coefficients because of the way G,, and J, in
(4) were point sampled in ¢’ and thus behaved as if they
were multifilament sources.

The constant « in (6) has been chosen so that ¢, and ¢,
are orthogonal with weight 1 to one another in the interval
0 < y+b/2 < h. This ensures that #; and ¢, form a lin-
early independent set and thus are suitable as expansion
functions.

The Green’s function in (4) is given by

B
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and the other terms have been defined previously. As can
be seen in (7), maximum convergence of the first S; term
of the Green’s function G,, occurs for maximum sep-
aration of the source and observation points. In (7), the
second S? term represents the interaction of the probe
with its short-circuit image. In (9), the upper portion of the
F? term has been obtained from [9] and the lower portion
from [1].

The impressed electric field E y,, which is used in (1), has
in this paper been derived by using two different methods.
In the first method, the impressed electric field has been
derived by using a Green’s function that ignores the wave-
guide environment and describes only the coaxial aper-
ture—probe surface radiation interaction. This is the
Green’s function which would be used to describe how a
coaxial aperture radiates onto a probe in a free-space
infinite ground plane system. In the second method, the
impressed electric field has been obtained first by deriving
the Green’s function which represents how a magnetic
current radiates in a semi-infinite waveguide and then by
using this Green’s function to find how the coaxial mag-
netic surface currents radiate onto the probe. The second
method for determining impressed electric field requires
more computational time than the first but produces more
accurate results. Both methods give nearly the same im-
pressed electric field when the probe radius is small but
show significant differences as the size of the probe radius
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increases. The electric field EyI which results from the first
method is given by [11]
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The impressed electric field of the second, more exact
method is given by
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where
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and where M, and M, are given above in (11). In (12), g,
and g, are the n coefficients of the Green’s functions
which are associated with the delta magnetic surface cur-
rents M = My8(F—7)a, and M = M,8(F — 7)4,.
Mathematically, g., and g,, have been derived by the
same method as was used by Collin for G,, but for
magnetic-type sources M, and M,. The g, and g,, are

given by
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and the other terms have been derived previously. The
upper portion of the F; term has been derived by using a
small modification of the analysis of [9] and the lower
portion by making a small modification of Collin’s analy-
sis [1].

Once the electric field due to radiation from the probe
back onto itself has been defined and the impressed elec-
tric field due to the coaxial aperture has been defined, the
next step in the analysis is to convert (1) into a matrix
equation which can thus be solved to find the surface
currents j,,. This is accomplished by multiplying (1) by
suitable testing functions and integrating from —b/2 to
—b/2+ h. The resulting equation after integration is the
matrix equation

2 ‘ —b/2+h
Z st SI'JS'I'=—f ts(y)EyI,(y) dy:
1s=1 ~b/2

M-

(18)
or

Zj=V (19)
where Z is determined after substitution of (4) in (1) and
the integrations of the appropriate integrals have been
carried out. In (18), the ¢,(y) of (6) was used as a testing
function. Although many testing functions are possible,
this one was chosen because 1) it becomes small near the
probe end, as does the impressed electric field, 2) it pro-
duces a symmetric matrix equation that can be more
numerically stable to invert than a nonsymmetric matrix
equation which would result from other testing functions,
and 3) it reduces computer time since the same function is

used as an expansion function and a testing function.
Once the matrix equation is solved, the input impedance

may be determined approximately from

Vo Vo
27 b —I—
'/(’) Jy(_i,(l))rld(b

A more accurate expression for input impedance can be
obtained from the expressions in [7] and [12], which in-
volve integrals over the coaxial aperture. These expressions
were not derived since fairly good agreement with experi-
ment was obtained by the use of (20). The solution of the
matrix equation also provides the surface currents, scatter-
ing parameters, and power which has been radiated by the
probe.

In concluding this section, we note that the formulation
which has been presented can be easily modified to de-
termine solutions for the probe current and the input

(20)

ZIN=

L Kok (w2 4 m2) 2t Kok, (w2 +m2 ) 7).

n=0
(17)

n>1

impedance of the antenna system under the assumption
that the probe current radiates from inside the probe
surface and also under the assumption that the probe
surface current is uniform. The solution which assumes
that the probe surface current radiates from within the
probe surface is obtained-from the above formulation by
replacing r; in (2) with r/, where 0 < r/ < r;. This method
has proved useful, as shown in [10], of producing more
physical probe current solutions than when the probe
current is taken to radiate from the probe surface. In the
limiting case of r/ =10, the solution reduces to the center-
located single-filament approximation used by Collin [1].
The uniform surface current solution, which applies when
the surface current is on the probe surface r, =r; or
assumed to be inside the probe surface (0 <r/<r;), is
determined directly from the probe matrix equation by
setting all of the surface current expansion coefficients j,.;
equal to one another for a given s’ (s’ =1,2), averaging the
resulting set of equations over i for a given s (s =1,2), and
then solving the reduced matrix equation (2X2) to de-
termine the uniform surface current expansion coefficients.
The present author recommends that, in the case when the
probe radius becomes relatively large, both the above
solutions be obtained in order to cross-check the solution
given by (19).

III. NUMERICAL RESULTS

In this paper, the matrix equation, (19), was inverted for
a fairly large number of different cases corresponding to
different probe heights, short-circuit distances, and fre-
quencies. In calculating these inverses, it was found that
the matrix condition number ranged from relatively low
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Fig. 2. The normalized input impedance as determined by Collin [1]
(square), moment method with rf = r; (dot), uniform current approxi-
mation with r/=r; (solid triangle), uniform filamentary current ap-
proximation with r/ = 0.01 , (hollow square) and experiment (plus) are
shown for two different frequencies and four different probe heights
(see text) at a radius of r;,=0.1778 cm. z, =50 @ and Z g = z;n /2.

values of 15 to high values of 500. Because of this, the
matrix inversion was calculated by using the pseudoinverse
method described in [13]. This method proved to be useful
for the present problem because it provided the exact
matrix equation solution in the cases where the condition
number was low and provided low-norm, least-square er-
ror, approximate matrix solutions when the condition
number was high.

A comparison of the input impedance obtained by the
solution of (19) with experiment is shown in Fig. 2 for the
frequencies of 2.0 GHz and 2.5 GHz and is shown when
ex=375 a=5715cm, b=2.223 cm, d=1524 cm, r, =
0.1778 cm, h;=1.270 cm, h,=1.524 cm, h,=1.778 cm,
and h,=2.032 cm. Experimentally, the semi-infinite na-
ture of the waveguide was implemented by 1) placing two
probes in a variable length cavity, 2) measuring the two-
port parameters of these probes at different cavity lengths,
and 3) analyzing this two-port data to determine the
equivalent two-port parameters of a probe which is located
in a semi-infinite waveguide. Theoretically, the impedance
solution shown in Fig. 2 was obtained by solving (19)
using the impressed electric field given in (11) and using
the pseudoinverse method. As can be seen, fairly close
agreement exists between theory and experiment.

Also shown in Fig. 2 is the input impedance determined
by the uniform current approximation when the
probe current was assumed to be on the probe surface
(r{=r;) and when the probe was nearly center located
(r{=0.01 r;). As can be seen, virtually no difference in the
impedance answers occurred for this radius size of r, =

A
.‘,g%
i [yt
e

)
=anugn
i

Fig. 3. The normalized input impedance as determined by moment
method with #/ = r; (dot), uniform current approximation r/ = r; (solid
triangle), and uniform filamentary current approximation rf =0.01 7,
(hollow square) is shown for two different frequencies and four differ-
ent probe heights (see text) at a radius of r; = 0.5334 cm. zo = 50 © and

Iin = 2in/Ze-

0.1778 cm. In contrast Collin’s solution, which is based on
keeping only the #,( y) term of (6), shows a very significant
difference when theory and experiment are compared. The
t,(y) term, when included in the analysis, greatly improves
the accuracy of the analysis when compared with experi-
ment.

Fig. 3 shows a comparison of the matrix solution (19)
when r/=r;, the uniform current approximation when
r{ = r;, and the uniform current approximation when rf =
0.01 r, in the case when r,=0.5334 ¢cm and all other
parameters are the same as in Fig. 2. Equation (11) was
used to describe the impressed electric field. The radius
value is three times that which was used in Fig. 2; thus,
this case may be classified as a wide-radius case. In con-
trast to the impedance data of Fig. 2 (r; = 0.1778 cm), the
impedance data of Fig. 3 show a significant variation in
impedance results when using the matrix solution, uniform
current approximation (r/=r;), and center-located fila-
ment approximation (r/=0.01 r;). It is also interesting
that the matrix solution shown in Fig. 3 tended to be
bounded on either side by the probe surface uniform
current approximation (r/=r;) and the filamentary uni-
form current approximation (r/=0.01 r;). Impedance
calculations were made for the r, = 0.3556-cm case, and
similar results to Fig. 3, but with less separation, were
observed.

In Fig. 4, the magnitude of the surface current is shown
as a function of ¢ and of the normalized probe height
coordinate y, = (y + b/2)/h for the case of f =2.5 GHz,
r;,=0.1778 cm, h=1.778 cm, and all of the other parame-
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Fig. 4. The magnitude of the probe surface current (vertical axis) is
shown as a function of the normalized probe height y, (horizontal axis)
and the probe angle ¢ (the third remaining axis). The ¢ indexed lines
running left to right show the surface current as a function of height for
a given ¢, and the ), indexed lines show the surface current as it varies
with ¢ for a given y.

ters the same as in Fig. 2. As can be seen, a large variation_

in the surface current occurs around the probe.
In concluding this section, the author would like to
present some general information which has been obtained

by solving different cases but which has not been pre-
sented graphically. The first pieces of general information

are that 1) the probe surface current determined by (19)
varies greatly with angle around the probe and 2) this
angular variation of the probe surface current made little
difference in the input impedance except as the probe
radius became large. The fact that the probe current solu-
tion varies with angle around the probe is not surprising
considering the nonsymmetric waveguide environment
which surrounds the probe. A second piece of information
that was obtained from solving different cases was the fact
that the impressed electric fields given by (11) and (13)
were nearly identical when the probe radius was thin but

became significantly different as the probe radius became

increasingly larger. The two impressed electric-field ap-
proximations gave nearly the same impedance results for
Fig. 2 but significantly different results for Fig. 3. A third
result that was obtained from studying many different
cases over a wide frequency range was the fact that the
power delivered at the coaxial aperture equaled the power
transmitted down the waveguide to within a few percent.
This power conservation was observed when only a TE,,
mode propagated and was also observed when the
frequency was large enough for multimodes to propagate.
Power conservation was observed to hold less well, how-
ever, as the frequency became larger or the probe radius
became larger.

IV. CONCLUSIONS

A method-of-moments solution for the input impedance
~and probe surface currents of a probe feeding into a
semi-infinite rectangular waveguide has been presented.

Accurate and approximate formulas for the impressed
coaxial electric field were derived. The matrix solution for
the input impedance was shown to give better results for
the input impedance than Collin’s formulas [1]. The probe
surface current was shown to vary significantly with probe
angle. Overall, fairly good agreement between theory and
experiment was found for the experimental cases whic

were tried. ‘ :
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